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Abstract—Initial work towards processing Afrikaans spoken
lectures in a resource-scarce environment is presented. Two
approaches to acoustic modeling for eventual alignment are
compared: (a) using a well-trained target-language acoustic
model and (b) using an acoustic model from another language, in
this case American English. We show that while target-language
acoustic models are preferable, similar performance can be
achieved by repeatedly bootstrapping with the American English
model, segmenting and then adapting or training new models
using the segmented spoken lectures. The eventual systems
perform quite well, aligning more than 90% of a selected set
of target words successfully.

I. INTRODUCTION

The use of speech recognition in lecture rooms has long
been understood as a potentially rewarding endeavour [1].
Such systems could be used to generate real-time captions,
or multimedia transcripts of lectures, and would clearly be of
major value to students with hearing disabilities, or students
who are not fluent in the language of the lecture. An aware-
ness of these benefits has prompted significant research and
development efforts, and research groups in the USA, Italy,
Japan, Canada and the United Kingdom have all demonstrated
promising systems (for an updated list of relevant publications,
see http://liberatedlearning.com).
In the developing world, the benefits of systems for lecture

transcription are potentially even greater, given the lower
literacy levels and greater multilingualism that are generally
prevalent. However, resource constraints have to date limited
lecture-transcription systems to the languages of the developed
world, and it is clear that developing such systems with
the limited resources of the developing world will require
substantial innovations. In the current paper, we propose a
few steps in that direction.
In particular, we investigate ways to employ speech-

processing tools in order to utilize such resources as may rea-
sonably be expected to exist in less-resourced environments,
such as audio recordings of variable quality and (potentially
inaccurate) transcriptions of some of those recordings. Our
focus is on two processing steps that are basic building blocks
in the processing of spoken lectures, namely alignment and
term detection. These processes support further stages of
lecture transcription (such as speaker adaptation) and are also
useful for purposes such as the production of multimedia

transcripts or the development of tools for searching through
recordings.
The main contributions of this work are

• the definition and evaluation of a process for the align-
ment of recordings and transcriptions, which is applicable
in under-resourced environments, and

• a report on the first results achieved on a new Afrikaans
corpus of recorded university lectures.

In Section II below, we provide background on several
topics related to our research, and Section III describes the
approach we followed for the alignment and indexing tasks.
Our results are reported in Section IV, and in Section V we
summarize our findings and provide context on the additional
work that is required to develop practically useful lecture-
transcription systems in under-resourced languages.

II. BACKGROUND

Speech processing for under-resourced languages has been
receiving increasing attention in recent years, as awareness
of the potential role of speech technology in addressing
developmental challenges has grown [2]–[4]. The approaches
that have been followed can be arranged on a continuum
from systems that lean heavily on systems developed for
well-resourced languages ( [5], for example, uses an English
speech-recognition system to recognize speech in ten different
languages through phone mappings) to those that assemble all
the resources to develop independent systems in the targeted
under-resourced language. Van Heerden et al. [6] demonstrated
significant benefits in accuracy achievable with the latter class
of approaches for small-vocabulary speech recognition – but,
of course, at the cost of requiring all the necessary resources.
As mentioned in Section I, most work on lecture transcrip-

tion to date has been quite resource intensive. For example,
the system for American English described in [7] used an
acoustic model that had been trained on 121 hours of speech
and language models trained with more than 6 million words
of speech; more than 200 hours of transcribed lectures were
then used for the refinement and evaluation of that system.
Impressive results have been achieved in such efforts: the
MIT team reported word error rates as low as 17% for a
complete recognition task in [7], and have demonstrated that
very useful applications can be developed around a recognizer

138



with that level of accuracy. Similarly, a note-taking system for
Japanese lectures – described in [8] – was able to improve
the producitivity of human editors by a large margin. That
system was based on acoustic models trained with the 658-
hour Corpus of Spoken Japanese.
A crucial aspect of our approach is its reliance on whatever

transcriptions are available; such “approximate” transcriptions
have received significant attention since the pioneering work
of Lamel et al. [9]. A three step approach – consisting of (1)
data segmentation, (2) word-based alignment and (3) filtering
– has gained wide acceptance, and several algorithms have
been proposed for each of these steps: see [10] for a recent
review, which specifically addresses the challenges of under-
resourced languages. The filtered data is subsequently used to
train or adapt acoustic models, using standard approaches for
supervised training.
Recently, the use of unsupervised training has received sig-

nificant attention [11]–[13]. Acoustic models are constructed
from untranscribed data, and these are improved in an iterative
fashion. Two types of approaches are used: (1) using no re-
sources apart from the acoustic data, and (2) when a language
model is available to guide recognition. In the first case only
preliminary results have been achieved while requiring very
large corpora as input [12], [13]. In the latter case, working
systems are achieved without the use of transcribed audio, but
then the existence of good language models is an important
prerequisite for system development [11].

III. APPROACH

Our Afrikaans spoken lectures corpus currently consists of
12 recorded lectures (9 male and 3 female) in various domains.
(We are planning on extending the corpus significantly in the
coming months.) These lectures vary in duration from less
than 5 minutes to approximately 45 minutes. A variety of
acoustic conditions prevail in the lectures – generally, static
microphones were employed in somewhat noisy classrooms.
While all lectures have corresponding transcriptions that vary
from approximate to accurate, no segmentation information is
available (that is, no information is supplied with regard to
which portions are transcribed and where they start or stop).

A. Text normalization

The lectures in question were transcribed by different tran-
scribers over a period of 4 years, resulting in predictable in-
consistencies with regard to transcription protocols for entities
such as numbers and abbreviations. Disfluencies, repetitions
and filled pauses were also not transcribed consistently (some
transcribers would include them in detail, while others would
transcribe as if the speech was fluent and grammatically
correct). Spelling mistakes were also common, which can be
detrimental to automatic pronunciation prediction approaches.
Another problem – expected to be common in many resource
scarce environments – is the frequent use of English words
and informal speech during lectures.
All of the abovementioned problems need to be addressed

in this domain, not only for the purpose of alignment using

acoustic models, but also to enable accurate and efficient
indexing of such a corpus.
The specific approach we followed to perform text normal-

ization entailed a six-step process:

• The entire corpus was spell-checked using an Afrikaans
spellchecker.

• Proper names were identified by inspecting all capital-
ized words. Once identified, pronunciations were created
manually.

• Abbreviations and acronyms were identified by consid-
ering all words with 4 or fewer letters, with at most
one vowel. Pronunciations for both the spoken as well
as the abbreviated form were then created and added to
the dictionary.

• Numbers written as digits were normalized to their spo-
ken form where there was no ambiguity. Where ambiguity
exists (for example in the pronunciation of “100”, where
the “one” is often omitted), the number was replaced with
a special token, with both corresponding pronunciations
being allowed in the dictionary.

• Possible English words were identified in a South African
English dictionary. Because there is non-negligible over-
lap between English and Afrikaans words, both the
English pronunciation and an Afrikaans pronunciation
(generated by rules if necessary) were retained for such
words.

• Pronunciations were automatically generated for any re-
maining words not in our reference dictionary, using
the Default & Refine algorithm [14] and the reference
dictionary from [15].

B. Alignment

We wanted to investigate the alignment of the lectures under
two conditions: one where we have a well-trained Afrikaans
acoustic model available, and another where we try to align the
corpus using a well-trained American English acoustic model.
1) NCHLT Afrikaans models: For the first approach, we

trained a model using the NCHLT Afrikaans corpus [16],
which consists of 185 speakers, with approximately 500 3-
5 word utterances per speaker. This amounts to approximately
80 hours of high-bandwidth speech.
The acoustic model was trained on 39 dimensional Mel

frequency cepstral coefficients (13 static with cepstral mean
normalization, 13 deltas and 13 double deltas). The hidden
Markov models (trained with HTK [17]) were standard 3-state
left to right tied-state triphone models, with 7 mixtures per
state and semi tied transforms. The tied states were created
using decision tree clustering. A 14 mixture garbage model
was then trained on the entire corpus and combined with this
initial model. This model was then used to perform initial
alignment, inserting optional garbage markers between words
to absorb disfluencies as well as inaccurately transcribed and
untranscribed portions.
At this stage, we had initial alignments, with potentially

untranscribed or poorly transcribed sections marked by the
garbage model. The next step entailed salvaging as much of
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the good quality alignments as possible for further retraining.
This was accomplished by following an approach described
in [10], which is based on a dynamic-programming (DP)
phone string alignment procedure. It compares the result
of a forced alignment with that of a free decode, using a
variable cost matrix, and subsequently identifies accurately
transcribed sections of audio and corresponding text. These
accurate portions were then in turn used to adapt the NCHLT
model on a per-lecture basis, using MAP adaptation, followed
by another round of alignment. MAP adaptation was only
performed where a lecture was at least 15 minutes in duration
(and in those cases we adapted on approximately half of the
available speech, retaining the other half for evaluation).
2) WSJ models: In resource-scare environments, large cor-

pora such as the NCHLT Afrikaans corpus are generally not
available. While we know that a model trained on data from
the target-language is likely to produce better alignments, it
is interesting to determine how closely one can approximate
the language-specific results when using a well-trained model
from a different language.
For this reason, we trained an American English acoustic

model using the WSJ corpus and the CMU pronunciation
dictionary, using the same parameters as for the NCHLT
Afrikaans model. We followed an iterative approach, where
the first iteration required remapping of phones from both
languages to come up with a common phone set. We employed
linguistic knowledge to generate such a mapping. As the
transcription conventions used in the CMU dictionary do
not model the schwa (/ax/) separately (it is modelled as
an unstressed variant of the other vowels that are marked
explicitly in the dictionary), we first employed an interpolated
phoneme mapping to identify likely occurrences of schwas.
Specifically (using ARPABET notation) all the /eh r/, /uh r/,
/uw r/, /ih r/, /iy r/ and /er/ samples were mapped to /eh ax r/,
/uh ax r/, /uw ax r/, /ih ax r/, /iy ax r/ and /ax r/ respectively
and the unstressed /ah/ mapped to /ax/ (retaining stressed /ah/
as /ah/). Once the dictionary was reformatted, each phoneme
(or combination of phonemes) was mapped directly to their
closest Afrikaans counterparts. 18 of the phonemes could be
mapped directly, the remainder are listed in Table I. Only two
English phonemes - /dh/ and /th/ - were not used.
This model was then used to align the lectures (again

inserting a garbage model between words), followed by the
DP alignment procedure described above and corpus segmen-
tation. MAP adaptation was then performed on a per-lecture
basis (where enough data was available), and globally for use
with those lectures with less than 15 minutes of audio – the
same training and test segments as for the NCHLT corpus were
employed. The process of alignment and corpus segmentation
was repeated using the MAP adapted model. The segmented
corpus resulting from this second iteration was then used to
train a new Afrikaans model from scratch, using the original
Afrikaans phone set. These models were again MAP adapted
on a per lecture basis.
3) Alignment durations: The direct alignment of long lec-

tures can be computationally very expensive. In order to get

TABLE I
Source models for Afrikaans where direct mappings were not available.

English Afrikaans Example
(ARPABET) (SAMPA) English Afrikaans

iy ax; ih ax i@ peer geen
uw ax; uh ax u@ poor boom
ih; iy i kin, keen sien
iy ax; ih ax 2: peer museum
ax 9 (SAE) this put
ih; iy y kin, keen vuur
hh x hand gaan
aw a u allow gauteng
ay a i abide baie
ch t S choke tjalie
oy O i ahoy boikot
jh d Z joke jazz

an intuition of the relationship between audio length and
alignment duration – and thus, to decide whether a pre-
segmentation step is justified – we aligned various lengths
of segmented lectures.

IV. ANALYSIS AND RESULTS

Several experiments were conducted to determine to what
degree lectures can be processed in resource scarce environ-
ments. We discuss the implications of lecture duration and
the corresponding computational cost of alignment in Section
IV-B. Different approaches to improving alignment accuracy
are discussed in Section IV-C and the implications of speaker
adaptation on alignment accuracy is described in Section IV-D.

A. Experimental setup

From an acoustic modeling perspective, two different ap-
proaches were followed; a well trained Afrikaans model (de-
scribed in section III-B1) was used to align Afrikaans lectures,
and a bootstrapping approach was followed whereby a well
trained American English model (see section III-B2) was used
for alignment of the same set of lectures. The reason for
the two different approaches is to firstly test the feasibility
of lecture transcription in resource-scarce environments where
no data in the target language is available, and secondly to
determine how detrimental the lack of target-language acoustic
models is at various stages in the processing chain.
In order to quantify the quality of our bootstrapped model,

as well as alignment accuracy, a time aligned, accurate
evaluation set is required. Since the audio in our corpus
is only accompanied by approximate transcriptions, word or
phone recognition – which would have been the standard
way of evaluating our bootstrapped model – is infeasible.
The transcriptions are also not time aligned, complicating the
evaluation of our alignment accuracy.
Davel et al. [10] used 3 measures to quantify corpus and

model improvement while processing internet harvested cor-
pora accompanied by approximate transcriptions: (a) amount
of audio absorbed by the garbage model, (b) average frame
log likelihood and (c) average DP score. These measures
were found to correlate well with each other, as well as with
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phoneme accuracy as estimated on a carefully transcribed
subset of data. We adopted these same measures to quantify
performance on spoken lecture alignment.
Another measure, duration-independent overlap rate [18]

was employed to evaluate alignment accuracy. For this mea-
sure, 100 randomly selected word instances were manually
time aligned across the corpus (50 within the segments that
were used for MAP adaptation, and 50 in the segments that
were used for evaluation only).
Eight systems were evaluated. The following notation is

employed in tables II and III:

• WSJ refers to the WSJ model where phone mappings,
as described in table I were employed. A garbage model
was also used in conjunction with this model.

• WSJ no gm is the same as the model mentioned above,
except that no garbage model was trained. This is the only
instance of the WSJ process where no garbage modeling
was used.

• WSJ + MAP/spk refers to speaker adaption using the
training subset from the longer lectures, on a per lecture
basis. A pooled model was also created by performing
MAP adaptation using all training data (including the
shorter lectures). Whenever a lecture had its own MAP
adapted model, that model was then used to align and
segment the lecture, using techniques described in [10].
If no such model exists, the pooled model was used for
segmentation.

• The segmented “corpus” of training data was then used
to retrain an Afrikaans spoken lecture (ASL) model from
scratch. Since the segmented corpus contains Afrikaans
lecture transcription data, the original Afrikaans phoneset
was used. This model was again used to segment the
corpus.

• ASL + MAP/spk refers to another round of speaker
adaptation using the ASL model

• For the assumption of the existence of a target-language
acoustic model, we used the Afrikaans NCHLT corpus
(NCHLT), together with a garbage model.

• NCHLT no gm is again the only instance where no
garbage modeling was used.

• Speaker adaptation was again used to adapt this model
on a per lecture basis (NCHLT + MAP/spk).

B. Time implications of alignment length

University lectures in South Africa are typically at least 30
minutes or longer in duration. As mentioned before, alignment
of such lectures is useful for indexing and general processing.
Naive alignment is expected to take very long, though, as other
researchers have noted [19]. However, solutions in resource
rich languages entail the use of language models. In the ab-
sence of well-trained language models, the computational cost
of aligning very long audio segments and the corresponding
trade-off with manual labour becomes an important issue to
investigate.
For this purpose, we manually segmented the spoken-

lectures corpus into 5, 10, 20 minute and longer (original
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Fig. 1. Alignment and decoding times as a function of audio duration, for
several lectures and lecture segments.

duration) segments. Alignment and decoding of each segment
were performed and timed on a single processor of a standard
desktop compute server. Figure 1 displays the result of this
timed alignment (and also for decoding, which we discuss
below). A relationship that is significantly worse than linear
is observed between alignment duration and the duration of the
audio being aligned. The longest lecture, which is 42 minutes
in duration, took approximately 97 hours to align, whereas the
short segments were aligned in less than real time.

The graph confirms that either manual intervention, where
lectures are segmented into 5 minute segments, or some au-
tomatic approach where smaller chunks are iteratively aligned
against the text until the best match is found, would be much
more computationally efficient than simply aligning entire
lectures.

C. Alignment accuracy

Alignment accuracy was evaluated using 4 measures, as
described in Section IV-A. Duration independent overlap was
measured across two sets of manually time aligned words. The
first set of 50 words was selected from those lectures which are
long enough to allow for a sizable amount of speech for MAP
adaptation (after some held-out sections have been removed,
typically the last half of the lecture). Another set of 50 words
was selected from the remaining, much shorter lectures. DP
scores, average frame log likelihood and percentage of audio
absorbed by the garbage model were only measured on the
held-out subset from the longer lectures.

From Tables II and III, it is clear that having a target-
language acoustic model available is the best case scenario.
However, it is very encouraging to see that a bootstrapping
approach can get very similar performance, at least as far as
alignment accuracy is concerned. It would be interesting to
see how these results scale when performing indexing or word
recognition.
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TABLE II
Duration independent overlap rate when using different models for

alignment.

model 50 words 100 words

WSJ 66.94 61.62
WSJ + MAP/spk 77.79 -
WSJ no gm 80.54 73.63
NCHLT no gm 83.65 76.84
ASL 85.80 -
ASL + MAP/spk 86.64 -
NCHLT 88.53 82.76
NCHLT + MAP/spk 93.37 -

TABLE III
Improvements observed during model refinement and alignment, reported on

the evaluation set.

model Avg DPS log P non-speech (%)

WSJ no gm -0.270 -91.79 36.37
WSJ -0.130 -88.46 58.60
NCHLT no gm -0.076 -84.28 27.68
WSJ + MAP/spk -0.063 -84.56 45.74
NCHLT -0.016 -84.05 46.29
ASL 0.163 -77.46 42.17
ASL + MAP/spk 0.217 -76.77 41.67
NCHLT + MAP/spk 0.236 -81.42 42.53

D. The effect of speaker adaptation

As expected, speaker adaptation seems to be beneficial to
the process of alignment. This is most obvious from the
difference between the system trained on segmented ASL data,
compared to the ASL system which was MAP adapted to
particular speakers.

The spoken lecture domain is different from general ASR
corpora, in that one can expect to receive substantial amounts
of data from a particular speaker who is lecturing a course. Our
hope is thus that as the corpus grows, enough data will become
available to train speaker specific models instead of having to
adapt from a larger model. The amount of data at which this
transition occurs (i.e. where a speaker-specific model is more
accurate than a general, adapted model) will be investigated
in future work.

E. The effect of garbage modeling

The garbage model we employed was very effective when
used with the NCHLT model, as can be seen from Table III.
All measurements (except the percentage of non-speech audio,
which is not easy to interpret without knowledge of how much
real speech is present) agree that garbage modeling is very
beneficial to the process.

On the WSJ model, the picture looks quite different, though.
From the amount of non-speech, it seems that our garbage
model is too greedy. The exact reason why it misbehaves with
WSJ as opposed to NCHLT is an interesting and important
research question that needs to be answered for this technique
to be completely robust. Our hypothesis is that language differ-
ences (between the model being employed and the audio being
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Fig. 2. DET curves displaying the result of an initial STD system. Results
are displayed when using average frame log-likelihoods and DP scores
respectively.

aligned) can lead to predictable failures of the garbage-model
approach. In particular, if the triphone models do not model
the target language well, the more general garbage model
(which has a large variance) becomes a better match than the
closest matching phone. One easy remedy may be to use fewer
mixtures with the triphone models, or to explicitly penalize the
garbage model based on language distance measures, such as
the Levenstein distance.

F. Initial indexing results

Initial spoken term detection (STD, or indexing) results
are displayed in figure 2. STD was performed by using a
grammar which allows any number (including zero) of the
specific term being searched for to be detected in a single file.
As an alternative, a garbage-silence hybrid model is allowed
in parallel and between terms.
DP scoring using a flat confidence matrix, as used in [10],

is clearly the superior confidence measure when compared
to average frame log-likelihoods. Future work will entail
evaluating indexing on accurately transcribed lectures and
using either linguistically motivated or data-driven scoring
matrices for DP scoring.

V. CONCLUSION

Initial work towards processing spoken lectures in resource-
scarce environments has been presented. It has been shown
that having target-language acoustic models is beneficial to the
processing of these lectures in general. However, the results
from using a well-trained model from a different language in a
recursive bootstrapping procedure are encouraging. We will in
future evaluate how these results correlate with actual lecture
transcription word error rates. The WSJ results also seem to
suggest (in line with observations in [10]) that with only a
couple of hours of approximately transcribed lectures, one
should be able to erase the initial difference observed between
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starting the process with a target-language model, as opposed
to a model from a different language. While we expect this
technique to generalize well to other resource-scarce languages
where reasonable phone mappings can be found, it will be
interesting to verify.
It will also be interesting to see to what extent our initial

corpus can be extended, using a recursive word-recognition
and unsupervised-retraining approach. Given the results that
we have achieved to date, we are confident that lecture-
transcription services with a usable accuracy can be created
for languages with limited resources – we therefore also
look forward to investigating the practical application of such
services in multilingual schools and universities.
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